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1 Introduction

This paper sets out some important technical results on the meaning and

manipulation of growth rates and interest rates in both discrete time and

continuous time. Without a basic understanding of the movement of variables

over time, and their changes over very short intervals, it would be impossible

to think clearly about economic development.

2 Growth Rates: Discrete and Continuous

In economic dynamics, we may use one of two types of analysis: discrete or

continuous.

In the discrete framework, the variables of interest take on a single value

per time period (usually, a year). As time advances from Year t to Year

t+1 to Year t+2, etc., the variable’s value changes: it jumps discretely at
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the end of each period to its new value to begin the next period. Within

periods, the variable does not change at all.

In the continuous framework, the variables are constantly changing at a

steady rate through time t.

We illustrate both types of change or growth with the population of

Europe, which we shall refer to as N . The centralizing concept of growth

is very simple: the annual percentage change in the variable in question.

This is also the principal concept for interest and capital appreciation and

we shall discuss these concepts as well. A key word here is "annual": all

rates of interest, growth, or change must be defined fundamentally in terms

of a precise time dimension. It is almost always a year.

Although we will use real data shortly, assume at first that population is

growing at about 10% per year. Figure 1 shows the paths of N under both

discrete and continuous growth for the first five years, assuming it began at

100 (that is, 100 million people). The actual growth of population in Europe

was far smaller.

The smooth curve labeled N(t) is the continuous case. The choppy curve

labeled Nd(t) reflects the discrete case. Notice that the two paths both begin

at N(0) = N0 = 100million.

The choppy path is the easiest to explain, so we begin there. The formula

for N after one year is given by the basic application of percentage change:

N1 = N0 (1 + nd) = 100(1.1) = 110. (1)
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Figure 1: Population Over Time: Discrete and Continuous

In the above expression, nd is the geometric growth rate, which here is .10

or 10%. To find the value for subsequent years, we may apply the above

formula repeatedly. For example, for 2 years it is:

N2 = N1 (1 + nd) = N0 (1 + nd)
2 = 100(1.1)2 = 121. (2)

For t years, where t is any integer, we find that population is given by:

Nt = N0 (1 + nd)
t. (3)

We can always calculate the geometric growth rate if we have data for any

two adjacent years. This formula is well-known and follows from (3):

nd =
Nt −Nt−1

Nt−1

. (4)
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Now consider the smooth growth path also shown in Figure 1. This

corresponds to exponential or continuous growth. In terms of interest, it cor-

responds to continuously compounded interest. The formula for the smooth

line is given by:

N(t) = N(0)ent = N0Exp(nt) , (5)

where n is the exponential growth rate. The rates n and nd are not the same,

although they are closely related to one another and n is derived from nd.

The variable e is simply a number. It is a natural constant, like π, and it is

given by e = 2.71828....... This number never repeats and is not completely

known. It is sometimes clearer to write the exponential function as Exp(nt),

but the meaning is exactly the same as ent

Equation (5) is derived from (1) by cutting the year into very small,

equal-sized bits and letting growth (like interest) be compounded within the

year, not over several years as in (3). For example, if 10% interest were

compounded on a monthly basis, and we began with $100 we would have the

following sum at the end of a year:

$W = 100
(

1 +
.10

12

)12

= $110.47. (6)

Notice that we get more than just 10%. That is, with compound monthly

interest, the corresponding simple yearly rate is 10.47% or, in the decimals

that we normally use, .1047. Also, note that the compounding process de-
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pends critically on the original yearly rate of .10. We divide this figure by

the number of periods (e.g. 12 months) before we compound.

If we let the number of periods get infinitely large, we end up with Equa-

tion (5). The exponential growth rate n that is based on the basic yearly

rate nd is always smaller than nd. In fact, the formula is given by:

n = ln (1 + nd) = ln(1.1) = .0953102 . (7)

We discuss the natural log function ln(.) below. An exponential growth rate

of 9.531% is just enough to keep up with a simple annual growth rate of 10%,

which is what is shown in Figure 1.

3 Exponential Growth Rates in Practice

We go through the bother of discussing exponential rates because they are

much easier to work with than geometric rates. For this section, recall from

high-school math that x2x3 = x5 and that x3/x2 = x . If those results ring

a bell, then this section will present no problem.

Consider, for example, the progress of per capita output y = Y
N

over time

(here Y is GDP), something that we are very concerned about. Assume that

Y is growing exponentially at the rate g while N, as before, is growing at

the exponential rate n. Then it is straightforward to show that y is growing

at the rate g − n. Here is how to show it:
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y(t) =
Y (t)

N(t)
=

Y0e
gt

N0ent
= y0e

(g−n)t = y0Exp[(g − n)t] . (8)

We infer by inspection that the rate of change of y is (g − n).

Consider now revenue R = PQ: revenue is price times sales. You should

be able to work out that the growth rate of revenue is equal to the growth

rate of the price plus (not times) the growth rate of sales.

Another example concerns a popular production function. Let us say

that output depends only on capital and that there are diminishing returns:

Y = Kα, where α < 1. If capital is growing at the rate gK , how fast is output

growing? We derive it as follows.

Y (t) = K(t)α =
(
K0e

gKt
)
α = K0

α
(
egKt

)
α = Y0e

αgKt. (9)

From this we see that the growth rate of Y is given by g = αgK .

You should be able to show that the growth rate of Z =
(
K
N

)β
is given

by: gZ = β (gK − n).

One final problem: find the growth rate of Y if the production function

is Y = KαLγ where L is workers, which differs from population. That is,

find g in terms of the growth rates of capital gK and workers gL (which may

equal n even though N < L ).

These results are even more important than they might seem because

they generalize to instantaneous growth rates, no matter what the underlying

process that is generating the change. We discuss this in more detail below.
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Next, however, we discuss the natural log function.

4 Natural Logs

Everyone knows what a square root is. But defining it out loud can be slightly

difficult. The reason for that is, I think, that all a square root does is undo a

square! Without the square of a number, the square root is meaningless. To

see this more formally, define the following function that squares a number:

S(x) = x ∗ x = x2 , (10)

where we may call S(x) the “square function”. That is, S(5) = 25. Simple

enough.

Now define the "square root function" R(x). This function just reverses

or undoes the square function. That is, R(25) = 5. It is hard to write down a

general function the way we wrote (10) above. Perhaps the most informative

way to write it is as follows:

S(R(x)) = x and R(S(x)) = x. (11)

That may look odd but it just says what we all know: (
√
x)

2
= x and

√
x2 = x.

The reason to bring this up is that the natural log function ln(x) is much

the same as the square root. It simply undoes the exponential function. That

7



is:

ln (ex) = x and eln(x) = x . (12)

The log function has no other meaning and does nothing else. Nonetheless,

it is extremely valuable. One very important property of the log function is

that

ln(AB) = lnA+ lnB. (13)

Here is how to show (13). Use (12) to express AB = elnAelnB . But the

latter can be written as elnA+lnB . Now take the log of the first and last

expressions in that sequence. They must be equal, which proves (13). It also

follows that ln(A/B) = lnA− lnB, another very useful result.

We illustrate the importance of the natural log with the population of

Europe in the next section.

5 The Population of Europe

Our best estimates show that Europe’s population was 81 million in 1500

AD and rose to 728 million in 2000. We shall simply assume or impose

exponential growth with a constant growth rate from the beginning to the

end of the 500 year path. This means that we assume the following is satisfied:
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N2000 = N1500e
nt. (14)

Notice that we know everything about (14) except the value of n. Thus,

t = 500, N1500 = 81, and N2000 = 728. To find n, we substitute in the values,

then take the natural log of both sides of (14) to get:

ln728 = ln81 + n500 =⇒

n =
1

500
(ln728− ln81) = .0043917 or .439% . (15)

In other words, the population of Europe grew, on average, at less than 1
2
%

.

Figure 2 shows our hypothesized, exponential path for population. Of

course it was not that smooth: war, famine, and disease still wreaked havoc

on the European population even after 1500. Only the first and last points

are “known”: the others are generated to make the path smooth.

Figure 3 shows the path of the natural log of the population over this time

period (again, our hypothesized path). It is given by

lnN = ln 81 + .00439t

The interesting thing here is that the natural log of a variable that is growing

exponentially in nature is a straight line. It is amazing how many economic

9



NHtL

1600 1700 1800 1900 2000 2100
Year

200

400

600

800

Euro Pop

Figure 2: Population of Europe

time series when transformed into the natural logarithm (like the natural log

of US GDP per capita) are straight lines over many years.

6 Negative Exponential Growth

Nothing prevents the growth rate from having a negative value. For example,

if population were growing faster than GDP, the growth rate of y would be

negative. You can see that this is a possibility from Equation (8). Assume

that g = .02 and n = .04, which is large, but not out of the question. Figure

4 shows what the path of y through time would look like. It is amazing

how quickly y(t) falls to near-zero at only a 2% annual decline. Luckily,

such long-run declines are extremely rare, even with war and very unstable

government.
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Figure 4: Negative Exponential Growth
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7 Instantaneous Growth Rates

So far, we have treated rates of change over very long intervals, seeking to

find the average annual growth rate – either discrete (also called geometric)

or exponential (also called continuous). Now we focus on a smaller time

period so that the results pertain to any variable moving through time.

First, let’s consider a yearly percentage change in the population. From

(4) and (15) – with t = 1 – we may say that the two rates nd and n are

approximately equal. Let us write them as follows:

nd =
N1996 −N1995

N1995

=
∆N

N
≈ n = lnN1996 − lnN1995 = ∆lnN . (16)

The symbol "∆" means “change in” over a specific time period. The squiggly

equals sign " ≈ " means “approximately equal to”.

What if we were interested in the yearly percentage change over a smaller

interval, like 6 months? Again, everything is based on a yearly rate. This

is very important. To find the answer, we would “pro-rate” the percentage

change by dividing through by the fraction of the year over which the change

takes place. We call this fraction "∆t" . Thus, we re-write (16) as:

nd =
∆N

∆t

1

N
≈ n =

∆ lnN

∆t
. (17)

The above is very general, since for a year ∆t = 1. For 1 month, ∆t = 1
12
;
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for a day, ∆t = 1
365

. The change in population is accordingly measured only

over the month or day as the case may be. By dividing this way, we keep

expressing the change on an annual basis.

Although we cannot show it here, something very interesting happens as

the time interval gets short: the approximation gets better. For a very short

– infinitesimally short – interval, the two are exactly the same! We use the

symbol "d" in place of "∆" to refer to this extremely short time interval.

Thus, we may now write:

n =
dN

dt

1

N
=
d lnN

dt
. (18)

Perhaps an example will help clarify the basic idea. Let’s say that at

the very beginning of the day of July 16, 2005 the population of the Czech

Republic was N = 10.24 million. On that day, the net increase in the popu-

lation was 420 people (not millions!). First, note that the first term in (18)

can be written as:

n =

(
420

1
365

)(
1

10.24 ∗ 106

)
= 0.0149707

How do we interepret this? It is the percentage by which the Czech popula-

tion would have grown over the year, if the rate of 420/day had continued.

Again, note that the year is the key. This is about 1.50% growth rate for

the Czech population.

The first ratio of (18), dN
dt
, is called the time derivative or rate of change in
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population and it is very important in growth theory. Notice that it is closely

related to the growth rate or percentage rate of change, n. They differ only

by the factor N . Often, we use the "dot" notation for the time derivative.

That is we would write (18) as:

n =
Ṅ

N
=⇒ Ṅ = nN . (19)

Again, the meaning of Ṅ is the absolute change in N over a small interval,

expressed on a yearly basis.

What about the second expression in (18), the log form? The change in

the log of N can be written as ln[(N + ∆N)/N ] . This uses (12) above. Here

is the math for calculating the growth rate using logs:

n2 = ln

(
10.24 ∗ 106 + 420

10.24 ∗ 106

)
∗ 365 = 0.0149704

Notice that the two rates are extremely close. This is because our time

interval – a day – is very short. If we did a calculation for a minute, the two

numbers would be even closer.

Although I have used population here, the ideas are applicable to any

economic time series, such as GDP, capital, or the price level. In the case of

capital K for example, we have:

gK =
K̇

K
=⇒ K̇ = gKK . (20)
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It is easy to go back and forth between growth rates and time deriva-

tives. In the next chapter we will employ these techniques to discuss the

fundamental model of economic growth.

8 Interest Rates

Interest rates, like growth rates, can be expressed either as simple discrete

(geometric) rates, rates that are compounded at various terms – see (6) – or

as continuously compounded (exponential) rates.

For example, if you begin with $A0 in the bank and keep it there for t

years at simple interest of Rd, at the end of the t years you will have:

$At = $A0 (1 +Rd)
t . (21)

The above is strictly only valid if t is an integer (i.e. 1, 2, 3, ....).

If the interest rate were instead compounded continuously, then the money

would grow to:

$A(t) = $A0e
Rt (22)

after t years. Here, there is no requirement that t be an integer.

To take a simple example, assume that you begin with $100.00 and can

earn Rd = .05 simple interest in Bank 1 and R = .05 continuously com-

pounded interest in Bank 2. In Bank 1, after 10 years you have $100(1 +
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.05)10 = $162.889, In Bank 2 you have: $100 ∗ Exp[.05 ∗ 10] = 164.872.

Clearly, continuous interest of the same magnitude is better.

9 Present Value

Suppose you will receive $B in year T . What is that worth today? You

could say it is worth the amount $A , such that, with interest, $A will grow

to $B in T years. As before, we may analyze the question in either discrete

or continuous time.

In discrete time, A must satisfy:

A(1 +R)T = B =⇒ A =
B

(1 +R)T
. (23)

In continuous time, A must satisfy:

AeRT = B =⇒ A = Be−RT . (24)

Here is a simple problem. Find the present value of $100 to be received in

10 years, if R = .03. Find both the continuous-time value and the discrete-

time value.

According to (23): A = 100
(1.03)10

= $74.41.

According to (24), we find: A = 100e−.03∗10 = $74.08

At very low interest rates, the two are very similar.
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10 Annuities

Let’s say you had $50,000 today. What constant amount could you consume

each year forever with that amount? The answer is what we call the “annuity

value” of the principal.

To find the answer, we note that in continuous time, the initial amount

must equal the integral of the present value of each year’s constant consump-

tion, C. That is:

A =

ˆ ∞
0

Ce−Rtdt =⇒ C = RA (25)

The formula is very simple and intuitive: you can consume the interest

on the asset forever.

In discrete time, the condition is still the sum of present values, which

leads to:

A =
∞∑
t=0

C
(

1

1 +R

)t
=⇒ C =

(
R

1 +R

)
A (26)

If Jane has an inheritance of euro 250,000, how much could she consume

forever given that the interest rate is 10%? Find the answer in both contin-

uous and discrete terms.

In continuous terms:

C = .10 ∗ 250, 000 = 25, 000 (27)
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In discrete terms:

C =
(
.10

1.10

)
250, 000 = 22, 727.30 . (28)

11 Conclusion

These are important techniques for use in all advanced economics and finance

courses. After working with them for a while, it becomes much easier to use

them and understand why they are so valuable.
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